
Maximum Flow Problem

Juhi Chaudhary* and Umang Bhaskar

STCS, TIFR Mumbai

STCS Vigyan Vidushi 2024
Course:Algorithms on Graphs

July 26, 2024

,



s t

How many edge-disjoint paths are there from s to t?



Can you answer the same question in this graph?



Let us further generalize this problem.



Flow Network

▶ A flow network G = (V ,E ) is a directed graph in which each
edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0 and
there are two distinguished vertices: a source s and a sink t.

▶ If E contains an edge (u, v), then there is no edge (v , u) in
the reverse direction.

▶ If (u, v) /∈ E , then for convenience we define c(u, v) = 0, and
we disallow self-loops.
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An example of a flow network.



Flow

A flow in a flow network G = (V ,E ) with a capacity function c ,
the source s and the sink t, is a real-valued function
f : V × V → R that satisfies the following two properties:

▶ Capacity constraint: For all u, v ∈ V , we require

0 ≤ f (u, v) ≤ c(u, v).

▶ Flow conservation: For all u ∈ V \ {s, t}, we require∑
v∈V

f (v , u) =
∑
v∈V

f (u, v).

The total flow in must equal the total flow out.
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An example of flow in a flow network. Entries on edges represent flow
and capacity values.



Value of the Flow

The value |f | of a flow f is defined as

|f | =
∑
v∈V

f (s, v)−
∑
v∈V

f (v , s).

That is, the total flow out of the source minus the flow into the
source.



Maximum-flow Problem

Input: A flow network G with source s and sink t.
Goal: To find a flow of maximum value.



Why is this an interesting problem?

Can model many problems, like:

▶ liquids flowing through pipes

▶ parts through assembly lines

▶ current through electrical networks

▶ information through communication networks

,
Applications in:

▶ Electrical Power Transmission

▶ Airline Scheduling

▶ Communication Networks

▶ in finding Bipartite Matching

▶ Robustness (in case an edge fails)



The Ford-Fulkerson Method

We call it a “method” rather than an “algorithm” because it
encompasses several implementations with differing running times.
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Three Important Components:

▶ Residual Networks.

▶ Augmenting Paths.

▶ Cuts.



Brief Idea:

▶ The Ford-Fulkerson method increases flow value step-by-step.

▶ It starts with f (u, v) = 0 for all u, v ∈ V , resulting in an initial flow
value of 0.

▶ Each step finds an augmenting path in the residual network Gf .

▶ The flow is updated using these paths until no more augmenting
paths exist.

▶ The max-flow min-cut theorem guarantees this process yields the
maximum flow.
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Residual Capacity

We define the residual capacity cf (u, v) for a pair of vertices
u, v ∈ V by

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E ,

f (v , u) if (v , u) ∈ E ,

0 otherwise.

(⋆)

Note: 1. Exactly one case of (⋆) applies to each ordered pair of
vertices.
2. We define residual capacity corresponding to some fixed flow f .
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Residual Network

Given a flow network G = (V ,E ) and a flow f , the residual
network of G induced by f is Gf = (V ,Ef ), where

Ef = {(u, v) ∈ V × V | cf (u, v) > 0}.





Three Important Components:

▶ Residual Networks. ✓

▶ Augmenting Paths.

▶ Cuts.



Augmenting Path

Given a flow network,G = (V ,E ) and a flow f , an augmenting
path p is a simple path from s to t in the residual network Gf .
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Residual capacity of an augmenting path p, given by

cf (p) = min{cf (u, v) | (u, v) ∈ p}.

Lemma: G = (V ,E ): flow network
f : a flow in G
p : an augmenting path in Gf .
Define a function fp : V × V → R by

fp(u, v) =

{
cf (p) if (u, v) is on p,

0 otherwise.

Then, fp is a flow in Gf with value |fp| = cf (p) > 0.
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Flow Augmentation

f : flow in G
f ′ : flow in the corresponding residual network Gf

f ↑ f ′ :V × V → R, such that

(f ↑ f ′)(u, v) =

{
f (u, v) + f ′(u, v)− f ′(v , u) if (u, v) ∈ E ,

0 otherwise.



Lemma: Let G = (V ,E ) be a flow network with source s and sink
t, and let f be a flow in G . Let Gf be the residual network of G
induced by f , and let f ′ be a flow in Gf . Then:

1. f ↑ f ′ is a flow in G .

2. value of |f ↑ f ′| = |f |+ |f ′|.



The Ford-Fulkerson method repeatedly augments the flow along
augmenting paths until it has found a maximum flow.

How do we know that when the algorithm terminates, it has
actually found a maximum flow?
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S and T = V \ S such that s ∈ S and t ∈ T .



What is a Cut in a flow network?

A cut (S ,T ) of a flow network G = (V ,E ) is a partition of V into
S and T = V \ S such that s ∈ S and t ∈ T .



If f is a flow, then the net flow f (S ,T ) across the cut (S ,T ) is:

f (S ,T ) =
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈S

∑
v∈T

f (v , u).

The capacity of the cut (S ,T ) is

c(S ,T ) =
∑
u∈S

∑
v∈T

c(u, v).

Notice the directions across the cut!
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A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.



Lemma: Let f be a flow in a flow network G with source s and
sink t, and let (S ,T ) be any cut of G . Then the net flow across
(S ,T ) is f (S ,T ) = |f |.

Lemma: The value of any flow f in a flow network G is bounded
from above by the capacity of any cut of G .
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Lemma: Let f be a flow in a flow network G with source s and
sink t, and let (S ,T ) be any cut of G . Then the net flow across
(S ,T ) is f (S ,T ) = |f |.

Proof.
Long cumbersome proof. Just use definitions! Can you try it
yourself later, please?

Lemma: The value of any flow f in a flow network G is bounded
from above by the capacity of any cut of G .

Proof.
30 seconds proof!



Max-flow min-cut theorem

If f is a flow in a flow network G = (V ,E ) with source s and sink
t, then the following conditions are equivalent:

1. f is a maximum flow in G .

2. The residual network Gf contains no augmenting paths.

3. |f | = c(S ,T ) for some cut (S ,T ) of G .

Proof.
I think VV’s can prove easily on the spot!
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Applications



Find maximum matching in this bipartite graph using Ford-Fulkerson.



You will need the following construction and lemma.
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Lemma
If the capacity function c takes only integer values, then f (u, v) is
an integer for all (u, v).



Thank You.


